isolation and initial characterization of a pure cultures capable to degradation methyl tert- butyl ether (mtbe)
Authors
abstract
methyl tert-butyl ether (mtbe), a gasoline octane enhancer, was introduced as a substitute for lead tetraethyl over 30 years ago. widespread use of mtbe in gasoline, has introduced mtbe into the environment compartments, mostly into the under ground and surface water and water as a second most frequently detected contaminant. in this study, we have isolated pure cultures from bacterial consortium capable to use mtbe as a sole carbon and energy source. mtbe biodegradation rate was measured in headspace by gas chromatography. initial liner rates of biodegradation by pinpoint and white strains were found 2.9 mg and 3 mg mtbe hˉ1 gˉ1 wet biomass, respectively. the results of 16s rdna pcr disclosed similarities in the banding patterns between the cultures, and the known degrading strain pm1. the results of this study suggest promising perspectives for engineering the in situ bioremediation of mtbe.
similar resources
Rapid Biodegradation of Methyl tert-Butyl Ether (MTBE) by Pure Bacterial Cultures
Two pure bacterial strains capable of rapid degrading methyl tert–butyl ether (MTBE) were isolated from an industrial wastewater treatment plant, identified and characterized. These strains are able to grow on MTBE as the sole carbon and energy sources and completely mineralize it to the biomass and carbon dioxide. The strains were identified as Bacillus cereus and Klebsiella terrigena. Bot...
full textMethyl tert-butyl ether (MTBE) degradation by a microbial consortium.
The widespread use of methyl tert-butyl ether (MTBE) as a gasoline additive has resulted in a large number of cases of groundwater contamination. Bioremediation is often proposed as the most promising alternative after treatment. However, MTBE biodegradation appears to be quite different from the biodegradation of usual gasoline contaminants such as benzene, toluene, ethyl benzene and xylene (B...
full textPhotocatalytic Degradation of Methyl Tert-Butyl Ether (MTBE) from Aqueous Solution: A Review
Nowadays, underground water is the main source of drinking water that contamination to organic pollutants such as MTBE is an important issue. One of the suitable methods for these types of pollutants is the advanced oxidation methods. Advanced oxidation processes (AOPs) are involved in the production of highly reactive hydroxyl radicals that oxidize organic matter such as MTBE and even le...
full textMethyl tert-butyl ether (MTBE) bioremediation studies
The massive production of methyl tert-butyl ether (MTBE), a primary constituent of reformulated gasoline, combined with its mobility, persistence and toxicity, makes it an important pollutant. It was considered recalcitrant until a few years ago, but recently MTBE biodegradation in aerobic conditions has been demonstrated with both mixed and pure cultures. Mixed cultures are generally the more ...
full textrapid biodegradation of methyl tert-butyl ether (mtbe) by pure bacterial cultures
two pure bacterial strains capable of rapid degrading methyl tert–butyl ether (mtbe) were isolated from an industrial wastewater treatment plant, identified and characterized. these strains are able to grow on mtbe as the sole carbon and energy sources and completely mineralize it to the biomass and carbon dioxide. the strains were identified as bacillus cereus and klebsiella terrigena. both st...
full textBioremediation of methyl tertiary-butyl ether (MTBE) by three pure bacterial cultures
Background: Bioremediation of groundwater and soil contamination is more economical than physicochemical remediation. The present study focused on the bioremediation capability of two bacterial species (Klebsiella planticola and Enterobacter cloacae) from the family Enterobacteriaceae. These bacteria have been identified as new species with capability of degrading methyl tertiary-butyl ether (...
full textMy Resources
Save resource for easier access later
Journal title:
iranian journal of public healthجلد ۳۵، شماره ۳، صفحات ۳۴-۳۹
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023